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Outline of Presentation

1. Why Do We Need Optics?

2. X-ray Mirrors (Reflective Optics)

3. Perfect Crystal X-ray Optics (Diffractive Optics)

4. Focusing Optics (Reflective, Diffractive and Refractive)

OUTLINE

I will not be talking about gratings as they are used in the soft x-ray 
region of the spectrum and the focus of this talk will be hard x-ray 
optics.
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§ Control the energy (E) and bandwidth (ΔE) of 
the beam.
• ΔE = 1-2 eV @ 10 keV; ΔE/E = 10-4 (typical 

diffraction exp.)
• ΔE = 1-2 keV @ 10 keV; ΔE/E = 10-1 (time-

resolved studies)
• ΔE =  a few milli-eV @ 10 keV; ΔE/E = 10-7

(inelastic scattering earlier today)

§ Control the size/divergence of the beam 
(often related).
• Micro or nano beams (spot sizes microns to 10’s 

of nanometers)
• Highly collimated beams

§ Control the polarization of the beam.
• Linear
• Circular (see talk on x-ray magnetic dichroism)

WHY DO WE NEED OPTICS?
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This expression for the (real part) index of refraction:

n  = [1 - (ne(e2/mc2) λ2/π)]1/2 ≈ 1 – (nere/2π)λ2

is usually written as:
n  = 1 - δ,     where  δ = (nere/2π)λ2.

and re = (e2/mc2) is the classical radius of the electron (2.82 x 10-13 cm), ne is 
the electron density, and λ is the wavelength of the x-ray.

When you plug in the numbers for the real part of the index of refraction you 
find: 

δ = 10-5 to 10-6

So you have:
an index of refraction less than one
differing from unity by only a few ppm

INDEX OF REFRACTION FOR X-RAYS:  N < 1

The index of refraction for x-rays was first calculated by 
Charles Darwin in 1914.  More about Darwin a little bit later.

See Appendices 1 
& 2 for more details

This simple treatment does not 
include any absorption. A more 
detailed calculation would result in an 
expression:

n  = 1 - δ - iβ
Where β = λµ/4π, with µ the linear 

absorption coefficient (I = Ioe-µt).
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The reflection and refraction of x-rays can 
be treated as any other electromagnetic 
wave traveling in a medium with index of 
refraction n1 encountering a boundary with 
another material with index of refraction n2.

SNELL’S (OR THE SNELL-DECARTES) LAW
φ1

Air (n1 = 1)

φ2
n2

Typical values for n2 (at 5890Å) are:
water: n2 = 1.33
glass: n2 = 1.52

φ1
Air (n1 = 1)

φ2
n2

For x-rays, the direction of propagation 
bends away from surface normal.

visible 
light

X-rays

The resultant kinematic properties (which follow from the wave 
nature of the radiation at boundaries) are:

§ The angle of incidence equals the angle of reflection

§ n1 sin(φ1) = n2 sin(φ2) (Snell's Law), where the φ's are 
measured with respect to the boundary normal

Willebrord Snellius
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Let an x-ray (in vacuum, where n1 = 1) impinge on a material with 
index of refraction n2.  From Snell's Law (when φ2 = 90°), we have:

n1sin(φc) = n2sin(90)    

cos(θc) = n2cos(0)   (θ= 90 - φ)

cos(θc) = n2

Expanding the cosine of a small angle  and substituting for n2 gives:
1 - (θc)2/2 = 1 - δ

θc = (2δ)1/2 

θc is the so-called critical angle, the angle at which there is total 
external reflection and the material behaves like a mirror.

CRITICAL ANGLE FOR TOTAL EXTERNAL REFLECTION

φcAir (n1 = 1)

φ2 = 90° n2

θc

Recall that the typical values 
for δ at 1 Å is 10-5 to 10-6 and 
so the critical angle is going to 
be about 10-3 or a few 
milliradians
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The amplitude of the reflected wave can be 
determined through the Fresnel equations.  Sparing 
you the details, the intensity ratio of the reflected 
and incident beam is given by:

IR / I = ⏐ER/E⏐2

From the Fresnel equations it can be shown that:
§ Below θc, there is unit reflectivity (when β, 

the absorption equals 0)

X-RAY REFLECTIVITY
Below θc, there is unit reflectivity (if β =0)

Θ
r

θ i < θc

θ i > θc

θ i = θc

n1 < 1

βδ in +−= 11

θ
out

Z

This plot is for fixed energy 
and varying the incident angle. 

This shows 
the effect of 
absorption
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Often mirrors are used as first optical components.  This means a polychromatic incident beam strikes the 
mirror at some fixed angle.

The relationship for the critical angle and wavelength can be re-written in terms of a critical energy, Ec, for a 
fixed angle of incidence θ. Since E = hc/λ, I can re-write this for a fixed θ, and determine the maximum energy, 
Ec, that will be totally reflected by the mirror.

θc = (2δ)1/2  =  λ(nere/π)1/2

Ec = hc/λc = (hc /θ) (nere/π)1/2

ENERGY CUTOFF FOR A FIXED ANGLE OF INCIDENCE MIRROR

Critical angle, θc , for fixed wavelength λ

Critical energy, Ec for fixed angle θ

Reflectivity as 
a function of θ, 
R(θ)

Reflectivity as a 
function of energy 
R(E)

For a fixed angle of incidence, you can vary the critical (cut-off) 
energy by coating the mirror with materials of different electron 
densities, ne.

θ = 3 mrad
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§ Because the incidence angle are small (a few milliradians) 
to capture the full extent of the beam (say 1 mm or so), x-
ray mirrors tend to be very long (sometimes over a meter).

§ Low-pass filters 
- mirrors can be used to effectively suppress high 

energies

- mirrors are designed so that the cutoff energy, Ec, 
can be varied by having several different coatings 
deposited on the mirror substrate

§ Mirrors can effectively remove a considerable amount of 
the heat in the raw (incident) beam and reduce the 
thermal loading on downstream optics.

X-RAY MIRRORS

Water cooled mirror in 
its vacuum tank.
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One-dimensional focusing, collimating, etc.

§ An ellipse is the ideal shape for a reflecting surface for point-to-point 
focusing.  (A source at one foci will be imaged at the other foci.)

§ Collimation can be achieved by a parabola if the source is placed at the 
focal point.  (This is simply an ellipse with the second focal point at 
infinity.)

§ In many cases cylindrically shaped mirrors are used rather 
than ellipses and parabolas since they are considerably easier to 
fabricate.  However, can this introduces aberations into the system
if the difference between the ideal shape and cylinder is large.

MIRRORS AS FOCUSING OPTICS

R

1

Θ

F

F
2

Focal length, f = [Rm sin θ]/2.  When we plug this into the  so-called lens formula:

and solve for the radius of curvature, we get  Rm = [2/sin θ] [F1 F2/(F1 + F2)].  

Typically θ is a few milliradians, sin θ ≈ θ and so if
F1 = F2 = 30 m, then the radius of curvature, Rm , is around 10 kilometers.

1
f
= 1
F1
+ 1
F2

source

focus
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Two-dimensional focusing (toroids and ellipsoids)
§ An ellipsoid is the ideal shape for a reflecting surface for point-to-point focusing.
§ Bent cylinders are often used in place of an ellipsoid.
§ The sagittal radius, Rs, is given by:

Rs = Rm sin2 θ

In our example, from the last slide, θ = 3 mrad and Rm = 10 km so the sagittal radius would be:

Rs = 9 cm

FOCUSING IN TWO DIMENSIONS WITH MIRRORS
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Another system that focuses in two dimensions consists of a set of two orthogonal 
singly focusing mirrors, off which incident X-rays reflect successively, as first 
proposed in 1948 by Kirkpatrick and Baez (KB). 

This system allows for easier fabrication of the mirrors and is used frequently at 
synchrotron sources.

FOCUSING IN TWO DIMENSIONS - KB SYSTEMS

Vertically 
focusing 
mirror

Horizontally 
focusing 

mirror

These are achromatic, i.e. the focal length is 
not dependent on x-ray wavelength.

focus

SLAC, Stanford University



HIGH-BRIGHTNESS SOURCES PUT STRINGENT DEMANDS ON MIRROR 
QUALITY
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If we hope to focus the x-ray beam to 20 nm, the 
specifications required are:

- slope error must be < 0.03 microradians (rms)
- surface roughness < 1 nm (rms)

over the length of the mirror.

Sources of errors in mirrors

(a) long range slope errors

(b) medium range slope errors

(c) surface roughness

(d) sum of all three errors

The mirrors requirements are very 
stringent if you want to use them 
for focusing or to preserve the x-
ray beam brightness.

a

b

c

d
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§ By far, the most commonly used optical component for x-rays are 
crystals satisfying Bragg’s law, i.e.,

§ In nearly all cases, are used as the diffractive 
elements since:

– they have a reflectivity near unity (more later)
– the physics is well understood and components can be 

fabricated with predicted characteristics
– If designed properly, they preserve the beam brightness

DIFFRACTIVE OPTICS

The Braggs shared the 
1915 Nobel Prize in 

Physics.
Images from:  
http://www4.nau.edu/micr oanalysis /Microprobe-
SEM/History.html

*“The Diffraction of Short Electromagnetic 
Waves”, W.L. Bragg, Proc. Cam. Phil. Soc. 
17, p43 (1913) Read November 11, 1912
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The name “dynamical diffraction” was coined due to the fact that, 
during the diffraction process from perfect single crystals, there is a 
dynamic interplay between the incident and scattered beam, which 
can be comparable in strength.

DIFFRACTION FROM PERFECT CRYSTALS
The theory that describes diffraction from perfect crystals is called 
dynamical diffraction theory (as compared with kinematical theory, 
which describes diffraction from imperfect or mosaic crystals) first 
proposed in 1914 by Charles Darwin in two seminal papers.

http://www.eoht.info/p
age/C.G.+Darwin

Perfect crystal modelMosaic  crystal model

In the case of a strong reflection from a perfect crystal of a monochromatic x-ray beam, the penetration of 
the x-rays in to the crystal is not limited by the (photoelectric) absorption, but the beam is attenuated due 
to the reflecting power of the atomic planes.   (This type of attenuation is called )

“ if the crystal is perfect all the 
radiation that can be reflected is so, 
long before the depth at which the rays 
at a different angle are appreciably 
absorbed.”
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The limited penetration due to extinction (reflection by the atomic 
planes) means:

§ At the Bragg condition, the x-ray beam is limited in the 
amount of materials it “sees”

§ and hence the scattered beam can get in and out of the 
crystal with little loss of amplitude from (photoelectric) 
absorption.

Consequence #1:
§ There is a finite angular width over which the diffraction 

occurs.  This is is often called the Darwin width, ωD , and 
depends on the strength of the reflection (hkl) and 
wavelength.

Consequence #2: 
§ The reflectivity over this narrow Darwin width is nearly 

unity, even in crystals with a finite absorption.

TWO IMPORTANT CONSEQUENCES OF LIMITED PENETRATION 
IN DIFFRACTION FROM PERFECT CRYSTALS

Using modern notation, Darwin width,
ωD, can  be written as:

ωD = 2reF(hkl)λ2/πVsin(2θ) 

F(hkl) = structure factor
V = volume of unit cell

No absorption
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REAL WORLD PERFECT CRYSTALS

Nearly perfect single crystals of synthetic 
(grown) diamonds are also desirable, primarily 
for their mechanical properties, which are 
extremely important when used as first optical 
components.

Perfect single crystal optics are used as the diffractive 
elements since:
§ they have a reflectivity near unity 
§ the physics is well understood and components can be 

fabricated with predicted characteristics
§ If designed properly, they preserve the beam brightness

At first glance, requiring the use of only perfect crystals for x-ray 
optical components may seem very limiting.  However, silicon 
and germanium, are readily available (due to their use in the 
semiconductor industry) and are grown in large boules that are 
relatively inexpensive. 

Si

diamond
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The most frequent use of perfect crystal optics are for x-ray monochromators.  They simply use Bragg’s Law 
to select a particular wavelength (or energy, since λ = hc/E):

λ = 2d sin(θ).

If we differentiate Bragg’s Law, we can determine the energy resolution of the monochromator.

Δλ / λ = ΔE/E = cot(θ) Δ θ

.

PERFECT CRYSTAL MONOCHROMATORS

ΔψΔθ = [Δψ 2 + ωD 2] 1/2

A value of ωD for the (111) reflection in silicon at 8 keV (1.5Å) is about 8 sec of arc or 40 microradians.  
Recall that, for an undulator, the opening angle is about 10  microradians at the APS.  Here the energy 
resolution of the mono is determined by the crystal.

Darwin 
width (optic)

X-ray 
divergence 
(source)
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polychromatic

monochromatic

REAL MONOCHROMATORS

Diffracted 
beam

LN2

manifoldCoolant channels

Strain relief

Cryogenically 
Cooled Si Mono

The most common arrangement is the double-crystal monochromator.  
It:

§ is non-dispersive, that is all rays that diffract from the first 
crystal simultaneously diffract from the second crystal (if 
same crystals with same hkl’s are used)

§ keeps the beam fixed in space as the energy is changed.

There is little loss in the throughput because the reflectivity is near 
unity over the Darwin width.

Monochromators need to be cooled to maintain the desired 
properties.

§ Silicon monochromators are often liquid N2 cooled to enhance 
thermal properties (higher conductivity and coefficient of 
thermal expansion goes through a zero at about 120°K.

See Appendix 3 for more information regarding 
thermal issues for monochromators.
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LN COOLED SILICON MONOCHROMATORS



HIGH-ENERGY RESOLUTION OPTICS
§ For techniques such as inelastic x-ray scattering, additional spectral filtering for higher-energy resolution 

(∆E/E ~ 10-5 – 10-6 ) is required for both the x-rays impinging on the sample as well as for those that 
scatter from it.  

§ To achieve energy resolution at this level requires special geometries for the optical components, often 
Bragg scattering with the angle of incidence near 90°.

§ Recall that:  Δλ / λ = ΔE/E = cot(θ) Δθ,  so this can be made small by θ -> 90°

21
See Appendix 4 for more information 

regarding high resolution optics
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DIFFRACTIVE FOCUSING OPTICS:  X-RAY ZONE PLATES

The wavefront modification is obtained through the 
introduction of a relative change in amplitude or phase in the 
beams emerging from two neighboring zones. 

Zone plates are diffraction gratings, that is, structures 
composed of alternating concentric zones of two materials 
with different (complex) refractive indices.

The focusing capability is based on constructive interference 
of the wavefront modified by passage through the zone plate. 

The wave that emerges from the zone plate is the 
superposition of spherical waves, one from each of the 
zones.

http://www.psi.ch/lmn/electron-beam-
lithography
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f

rn

Rn

Rn = f + n(λ/2)

Condition so the pathlength

varies by λ/2 for each ring. 

  

The radius of the nth zone is therefore:

rn = (Rn
2 - f2)1/2  = [(f + n(λ/2))2  - f2]1/2

   = [nf λ + n2(λ2/4)]1/2

If f >> nλ, as is usually the case with hard x-rays, then:

rn = (nfλ)1/2   

ZONE PLATE PHYSICS

Cape Meares Lighthouse (Oregon); 
first-order Fresnel lens

These are chromatic, i.e. the focal length is 
dependent on x-ray wavelength.

In general, the size of the focal 
spot from the zone plate is 
determined by the width of the 
outermost ring, Δrout , and is 
given by:

Δx = 1.22 Δrout .Δrout
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Phase zone plates have a much better efficiency than amplitude zone 
plates (10% efficiency for amplitude zone plates vs 40% for phase zone 
plates).

Multiple zone plates can be “stacked” to increase the effective thickness, 
but alignment is critical.

HARD X-RAY PHASE ZONE PLATES
The difficulty with making zone plates at hard x-ray energies is one of  fabrication.  You 
need:
§ small width outermost zone for focusing (less than 50 nms)

but it has to be thick (high) to totally absorb the unwanted waves
§ i.e. the aspect ratio (height/width) is very large – 102 - and therefore difficult (i.e. 

impossible) to fabricate

An alternative to “blocking” out those rays that are out of phase (as in an amplitude 
zone plate), the thickness of the material can be adjusted so that the wave 
experiences a phase shift of π.

See Appendix 5 for an interesting alternative 
method for zone plates fabrication.
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REFRACTIVE FOCUSING OPTICS:  X-RAY LENSES
Roentgen's first experiments convinced him that x-rays could not be concentrated by lenses; many years 
later his successors understood why (i.e., index of refraction is very close to 1).

Refractive lenses were considered by Kirkpatrick and Baez in 1948 for focusing but were abandoned for 
crossed mirrors.

Unfortunately materials of large δ are also strong absorbers, 
because the absorption coefficient increases much more 
rapidly than δ with increasing atomic number.  Therefore, an 
element of low atomic number, such as beryllium, is typically 
used.

§ For a single concave lens:         1/F = δ(1/R)

§ Plugging in some numbers, suppose that:

R = 1 mm   δ ≈ 10-5  

§ Then the focal length, F,  would be at 100 m!  



26

Incident

X-rays

Incident

X-rays

F

R

Single Refractive Lens

Compound Refractive Lens

F

R

Δs

Δα

Aeff

The Lens Maker’s Equation:  1/F = δ (1/R1 + 1/R2 + etc.)

For a single lens: 1/F = δ(1/R + 1/R) 

or

F = R / 2δ

If we have N surfaces, all with radius r: F = R/2Nδ

COMPOUND REFRACTIVE LENSES

Using the same numbers as before (R = 1 mm   δ ≈ 10-5  )
but with 50 lenses, the focal length would be: 

F = 10 m.  

These lenses focus at rather larger distances and are well 
adapted to the scale of synchrotron radiation beamlines.

These are chromatic, i.e. the focal 
length is dependent on x-ray 

wavelength.
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FOCUSING IN WITH REFRACTIVE LENSES

Figures from:
http://2b.physik.rwth-
aachen.de/xray/imaging/main.php?language=
en&frames=&content=crl#Focusingmethods

2-D lenses typically “embossed” and typically made from Be,	Al	or	Nickel

Spherical lenses are easy to make but suffer from spherical aberrations.

Paraboloids eliminate spherical aberrations.

Planar technologies for 1-D focusing
§ Leverage planar technologies 

from micro-electronics 
industry

§ Fabricate compound lens 
systems in a small space

§ Small radius means moderate 
focal spots with a single lens 
or nano-focusing with a 
moderate number of lenses



CURRENT OPTICS R&D ACTIVITIES
X-ray optics is still an active area of research at 
both universities and national laboratories (in 
particular here at the APS).

§ Adaptive mirrors
§ Nanodiffractive optics
§ Simulation tools. 

28



REFERENCES
Hard X-ray Optics
§ Elements of Modern X-ray Physics, Jens Als-Nielsen and Des McMorrow, John Wiley and Sons (2001).

§ Third Generation Hard X-ray Synchrotron Radiation Sources, Dennis Mills, Editor, John Wiley and Sons 
(2002).

§ Dynamical Theory of X-ray Diffraction, Andre Authier, IUCr Oxford Science Publications (2001).

§ Report of the Basic Energy Sciences Workshop on X-ray Optics for BES Light Source Facilities, Dennis 
Mills and Howard Padmore, Co-Chairs,  March 27-29, 2013.  
(http://science.energy.gov/~/media/bes/pdf/reports/files/BES_XRay_Optics_rpt.pdf)

§ The Optical Principles of the Diffraction of X-rays, R. W. James, Cornell University Press (1965)

Soft X-ray Optics
§ Soft X-ray Optics, Eberhard Spiller, SPIE Optical Engineering Press (1994)

29



APPENDICES
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The dielectric constant, κ,  is defined as follows:

κ = D/E = (E + 4πP)/E = 1 + 4π(P/E)

For a single electron:      P = -ex
and for multiple electrons: P = -exne

In the Drude model, the frequency of the collective oscillations of the electron gas around the positive ion 
background is the so-called plasma frequency and equal to:

ωo = [4πnee2/m]1/2 .

If we assume a simple harmonic approximation then:  

F= ma = mx”= -eE - kx

where k is the “spring constant” associated with ωo (= [k/m]1/2).

APPENDIX 1A:  DIELECTRIC CONSTANT AND THE DRUDE MODEL

(ne is the number of electrons/unit volume) 
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If x (from the previous page) has a solution of the form x = Aeiωt, solving for x we get:

x = (e/m)E/(ωo
2 - ω2) and P = -(e2/m)neE /(ωo

2 - ω2) 

Using this simple model, one can then calculate the polarizability of the material:

κ =  1 + 4π(P/E) = 1 + 4π (e2/m)ne [1/(ωo
2 - ω2)]

For Si, ne = 7 x 1023 e/cm3 and so the plasma frequency is: 

ωo = 5 x 1016/sec

For a 1 Å x-ray, the angular frequency, ω (= [2πc/λ]), is 2 x 1019/sec (>> ωo) and so we can write:

κ = 1 + 4π (e2/m)ne [1/(ωo
2 - ω2)] ≈ 1 - 4π (e2/m)ne [1/(ω2)]

n = κ1/2  = [1 - (ne(e2/mc2) λ2/π)]1/2 ≈ 1 – (nere/2π)λ2

APPENDIX 1B: X-RAY INDEX OF REFRACTION
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This simple model did not include any absorption of the incident radiation.  A more detailed calculation 
would result in an expression:

n  = 1 - δ - iβ
where δ = (nere/2π)λ2 and β = λµ/4π, with µ the linear absorption coefficient (I = Ioe-µt).

APPENDIX 2A: INCLUSIONS OF ABSORPTION IN THE (COMPLEX) 
INDEX OF REFRACTION

OK, isn’t Vgroup = (c/n) ?  If n < 1, doesn’t that mean the x-rays are traveling faster than the speed of light?  
NO!

Vgroup =
dω
dk

and ω =
ck
n

so Vgroup =
d
dk

ck
n
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k2

Vgroup =
d
dk

ck

1− 2πnere
k2

"

#

$
$
$

%

&

'
'
'

≈
d
dk

ck 1+ 2πnere
k2

)

*
+

,

-
.

"

#
$

%

&
'= c

d
dk

k+ 2πnere
k

)

*
+

,

-
.

"

#
$

%

&
'= c 1−

2πnere
k2

)

*
+

,

-
.

APPENDIX 2B: INDEX OF REFRACTION FOR X-RAYS IS <1
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In order to maintain the beam intensity and 
collimation (i.e., brilliance) through the 
optics, special attention must be paid to the 
issue of thermal management.  

APPENDIX 3A:  THERMAL LOADING ON OPTICS
Along with the enormous increase in x-ray beam brilliance from insertion devices comes 
unprecedented powers and power densities that must be effectively handled so that thermal distortions 
in optical components are minimized and the full beam brilliance can be delivered to the sample.

Process Approx. Heat Flux (W/mm2)

Fission reactor cores 1 to 2
Interior of rocket nozzle 10
Commercial plasma jet 20

Sun’s surface 60
Fusion reactor components 0.05 to 80
Meteor entry into atmosphere 100 to 500

Total power from an undulator of length L and magnetic field B with I current in the storage ring is:

P[watts] = 0.633 E2[GeV] B2[T] I [mA] L [m]
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APPENDIX 3B:  PROPERTIES OF SI, GE, AND C(DIAMOND)
Thermal gradients, ΔT, and coefficient of thermal expansion, α, contribute to crystal distortions:

αΔT  = Δd/d = cot (θ) Δθ = cot (θ) ωD.

We therefore need to look for materials that have a very low coefficient of thermal expansion, α, and/or 
have a very high thermal conductivity, k, so that the material cannot support large ΔT’s.
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These conditions motivate us to use cryogenically cooled silicon or room temperature diamond as high 
heat load monochromators.

FOM of various materials

k  - thermal α  - coef. of k/α
material conductivity thermal expansion FOM

Si (300°K) 1.2 W/cm-°C 2.3 x 10-6 /°K 0.5

Si (78°K) 14 W/cm-°C -0.5 x 10-6 /°K 28

Dia. (300°K) 20 W/cm-°C 0.8 x 10-6 /°K 25

APPENDIX 3C: FIGURE OF MERIT (FOM) FOR VARIOUS MATERIALS
AND TEMPERATURES
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At θ = 89°, cot(θ)= 1.7 x 10-2.  For E = 20 keV (0.64Å), then:

ΔE = E cot(θ)Δθ = (2 x 104 keV)(1.7 x 10-2)(10-5rad)    = 3 x 10-
3 eV.

Note: For Si (111) at a Bragg angle of θ = 89°, the wavelength is 6.2Å 
(2 keV) and so to get near 20 keV at θ = 89°, we need to use a very 
high d-spacing such as Si (11 11 11).

APPENDIX 4: HIGH ENERGY-RESOLUTION OPTICS 

The high energy resolution 
inelastic x-ray (HERIX) beamline 

at the APS with an array of 
analyzers.

A diced, high energy resolution inelastic 
x-ray spherical analyzer.

Inelastic scattering set-up at the  3-ID-C 
beam line at the APS.  The sample is 
located in the right front corner of the 
photo.  The analyzers are in the back and 
not visible.



Start with a linear zone plate geometry and then use a Kirkpatrick-Baez configuration to get focusing in 
both directions.

APPENDIX 5: A NEW APPROACH TO FABRICATING ZONE PLATES –
MULTILAYER LAUE LENSES (MLLS)

Using state-of-the-art deposition techniques, start 
with the thinnest layer first and fabricate a 
multilayer structure with the layer spacing 
following the Fresnel zone plate rule.

Slice and polish the multilayer structure to get a 
linear zone plate.

Each MLL comprises 1,588 layers (lines)
The thinnest layer (line) is 5 nanometers thick

The MLL has a current focus of 11 nanometers at 12 keV 
and 16 nanometers @ 19 keV!

H. C. Kang, J. Maser, G. B. 
Stephenson, C. Liu, R. Conley, A. 
T. Macrander, and S. Vogt, 
“Nanometer Linear Focusing of 
Hard X Rays by a Multilayer Laue 
Lens,” Phys. Rev. Lett. 96, 
127401 (2006). 

Wedged MLL
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APPENDIX 5: MULTILAYER LAUE LENSES
§ Technical approach

– Crossed multilayer-based 
linear zone plate structure
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16 nm

η = 30%

500	nm

Kang et al, APL 92, 221114 (2008)

1-D focus: 16 nm  (half MLL) @ 19.5 keV

Yan et al, H. Yan et al, Opt. Exp. 2011
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2-D imaging with crossed MLL (ANL/BNL 
collaboration)

2-D focus: 25 x 40 nm2 (2D, crossed MLL) @ 20 keV
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